

Find the equation of the tangent line to the following curves: Hint: Find the slope of the tangent line (IROC) first.

a)
$$y = x - x^{3}$$
 at $x = -1$

$$\lim_{X \to -1} \frac{f(x) - f(-1)}{x - (-1)}$$

$$\lim_{X \to -1} \frac{x - x^{3} - 0}{x + 1}$$

$$\lim_{X \to -1} \frac{x(1 - x^{2})}{x + 1}$$

$$\lim_{X \to -1} \frac{x(1 - x)(1 + x^{2})}{x + 1}$$

$$\lim_{X \to -1} \frac{x(1 - x)(1 + x^{2})}{x + 1}$$

$$\lim_{X \to -1} \frac{x(1 - x)(1 + x^{2})}{x + 1}$$

$$\lim_{X \to -1} \frac{x(1 - x)(1 + x^{2})}{x + 1}$$

$$\lim_{X \to -1} \frac{x(1 - x)(1 + x^{2})}{x + 1}$$

$$\lim_{X \to -1} \frac{x(1 - x)(1 + x^{2})}{x + 1}$$

$$f(-1) = -1 - (-1)$$

$$= -1 - (-1)$$

$$= -1 - (-1)$$

$$= -1 - (-1)$$

$$= -1 - (-1)$$

$$= -1 - (-1)$$

$$= -1 - (-1)$$

$$= -1 - (-1)$$

$$= -1 - (-1)$$

$$= -1 - (-1)$$

$$= -1 - (-1)$$

$$= -1 - (-1)$$

$$= -1 - (-1)$$

$$= -1 - (-1)$$

$$= -1 - (-1)$$

$$= -1 - (-1)$$

$$= -1 - (-1)$$

$$= -1 - (-1)$$

$$= -1 - (-1)$$

$$= -1 - (-1)$$

$$= -1 - (-1)$$

$$= -1 - (-1)$$

$$= -1 - (-1)$$

$$= -1 - (-1)$$

$$= -1 - (-1)$$

$$= -1 - (-1)$$

$$= -1 - (-1)$$

$$= -1 - (-1)$$

$$= -1 - (-1)$$

$$= -1 - (-1)$$

$$= -1 - (-1)$$

$$= -1 - (-1)$$

$$= -1 - (-1)$$

$$= -1 - (-1)$$

$$= -1 - (-1)$$

$$= -1 - (-1)$$

$$= -1 - (-1)$$

$$= -1 - (-1)$$

$$= -1 - (-1)$$

$$= -1 - (-1)$$

$$= -1 - (-1)$$

$$= -1 - (-1)$$

$$= -1 - (-1)$$

$$= -1 - (-1)$$

$$= -1 - (-1)$$

$$= -1 - (-1)$$

$$= -1 - (-1)$$

$$= -1 - (-1)$$

$$= -1 - (-1)$$

$$= -1 - (-1)$$

$$= -1 - (-1)$$

$$= -1 - (-1)$$

$$= -1 - (-1)$$

$$= -1 - (-1)$$

$$= -1 - (-1)$$

$$= -1 - (-1)$$

$$= -1 - (-1)$$

$$= -1 - (-1)$$

$$= -1 - (-1)$$

$$= -1 - (-1)$$

$$= -1 - (-1)$$

$$= -1 - (-1)$$

$$= -1 - (-1)$$

$$= -1 - (-1)$$

$$= -1 - (-1)$$

$$= -1 - (-1)$$

$$= -1 - (-1)$$

$$= -1 - (-1)$$

$$= -1 - (-1)$$

$$= -1 - (-1)$$

$$= -1 - (-1)$$

$$= -1 - (-1)$$

$$= -1 - (-1)$$

$$= -1 - (-1)$$

$$= -1 - (-1)$$

$$= -1 - (-1)$$

$$= -1 - (-1)$$

$$= -1 - (-1)$$

$$= -1 - (-1)$$

$$= -1 - (-1)$$

$$= -1 - (-1)$$

$$= -1 - (-1)$$

$$= -1 - (-1)$$

$$= -1 - (-1)$$

$$= -1 - (-1)$$

$$= -1 - (-1)$$

$$= -1 - (-1)$$

$$= -1 - (-1)$$

$$= -1 - (-1)$$

$$= -1 - (-1)$$

$$= -1 - (-1)$$

$$= -1 - (-1)$$

$$= -1 - (-1)$$

$$= -1 - (-1)$$

$$= -1 - (-1)$$

$$= -1 - (-1)$$

$$= -1 - (-1)$$

$$= -1 - (-1)$$

$$= -1 - (-1)$$

$$= -1 - (-1)$$

$$= -1 - (-1)$$

$$= -1 - (-1)$$

$$= -1 - (-1)$$

$$= -1 - (-1)$$

$$= -1 - (-1)$$

$$= -1 - (-1)$$

$$= -1 - (-1)$$

$$= -1 - (-1)$$

$$= -1 - (-1)$$

$$= -1 - (-1)$$

$$= -1 - (-1)$$

$$= -1 - (-1)$$

$$= -1 - (-1)$$

$$= -1 - (-1)$$

$$= -1 - (-1)$$

$$= -1 - (-1)$$

$$= -1 - (-1)$$

$$= -1 - (-1)$$

$$= -1 - (-1)$$

$$= -1 - (-1)$$

$$= -1 - (-1)$$

$$= -1 - (-1)$$

$$= -1 - (-1)$$

$$= -1 - (-1)$$

$$= -1 - (-1)$$

$$= -1 - (-1)$$

$$= -1 - (-1)$$

$$= -1 - (-1)$$

$$= -1 - (-1)$$

$$= -1 - (-1)$$

$$= -1 - (-1)$$

$$= -1 - (-1)$$

$$= -1 - (-1)$$

$$= -1 - (-1)$$

$$= -1 - (-1)$$

$$= -1 - (-1)$$

$$= -1 - (-1)$$

$$= -1 - (-1)$$

$$= -1 - (-1)$$

$$= -1 - (-1)$$

$$= -1 - (-1)$$

$$= -1 - (-1)$$

$$= -1 - (-1)$$

$$= -1 - (-1)$$

$$= -1 - (-1)$$

$$= -1 - ($$

Calculus 120 Unit 1: Rate of Change and Derivatives

February 6, 2019: Day #5

- 1. Quiz
- 2. Assignments Due

_			^ 1	
	ırrıcı	IIIIM	Outco	mee
Vи		41 M I I I	U ulu	<i>-</i>

C1. Explore the concepts of average and instantaneous rate of change.

Determine the equation of the tangent line to the hyperbola

$$y = \frac{1}{x}$$
 at the point (-2, -1/2).

$$y = \frac{1}{x}$$
 at the point (-2, -1/2).
 $|x| = \frac{1}{x}$ at the point (-2, -1/2).
 $|x| = \frac{1}{x}$ at the point (-2, -1/2).

$$\begin{array}{ccc} 11 \dot{m} & \frac{1}{13} + \left(+\frac{1}{5}\right) \dot{x} \\ \chi \rightarrow -2 & \frac{\times 3}{2} + \left(+\frac{1}{5}\right) \dot{x} \end{array}$$

$$| \lim_{X \to -2} \frac{2}{2x} + \frac{x}{2x}$$

$$\times +2$$

$$\lim_{\chi \to -2} \left(\frac{2+\chi}{2\chi} \right) \left(\frac{1}{\chi + 2} \right)$$

$$m = -\frac{1}{4}$$
 $P(-2, -\frac{1}{2})$
 $y = m \times 4b$
 $-\frac{1}{4} = -\frac{1}{4}(-2) + b$
 $-\frac{1}{4} = \frac{1}{4}a + b$
 $-\frac{1}{4} = b$

Normal Lines

The normal line to a curve at a point is the line perpendicular to the tangent at that point.

Remember from NRF....Perpendicular lines have slopes which are negative reciprocal (flip feadling stage)

Ex: For the function $f(x) = 4 - x^2$

- a) Determine the slope of the tangent line at x = 1.
- b) Determine the equation of the tangent line at this point.
- c) Determine the equation of the normal line at this point.

a)
$$\lim_{x \to 1} \frac{f(x) - f(1)}{x - 1}$$

$$\lim$$

Find the equation of the specified normal line to the following curve:

$$y = \frac{2}{x+1}$$
 at $x = -2$

Attachments

2.1_74_AP.html

2.1_74_AP.swf

2.1_74_AP.html